Add like
Add dislike
Add to saved papers

Leaf anatomy does not explain apparent short-term responses of mesophyll conductance to light and CO 2 in tobacco.

Mesophyll conductance to CO2 (gm ), a key photosynthetic trait, is strongly constrained by leaf anatomy. Leaf anatomical parameters such as cell wall thickness and chloroplast area exposed to the mesophyll intercellular airspace have been demonstrated to determine gm in species with diverging phylogeny, leaf structure and ontogeny. However, the potential implication of leaf anatomy, especially chloroplast movement, on the short-term response of gm to rapid changes (i.e. seconds to minutes) under different environmental conditions (CO2 , light or temperature) has not been examined. The aim of this study was to determine whether the observed rapid variations of gm in response to variations of light and CO2 could be explained by changes in any leaf anatomical arrangements. When compared to high light and ambient CO2 , the values of gm estimated by chlorophyll fluorescence decreased under high CO2 and increased at low CO2 , while it decreased with decreasing light. Nevertheless, no changes in anatomical parameters, including chloroplast distribution, were found. Hence, the gm estimated by analytical models based on anatomical parameters was constant under varying light and CO2 . Considering this discrepancy between anatomy and chlorophyll fluorescence estimates, it is concluded that apparent fast gm variations should be due to artefacts in its estimation and/or to changes in the biochemical components acting on diffusional properties of the leaf (e.g. aquaporins and carbonic anhydrase).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app