Add like
Add dislike
Add to saved papers

Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation.

The HIV trans-activator Tat recruits the host transcription elongation factor P-TEFb to stimulate proviral transcription. Phosphorylation of Thr-186 on the activation loop (T-loop) of cyclin-dependent kinase 9 (CDK9) is essential for its kinase activity and assembly of CDK9 and cyclin T1 (CycT1) to form functional P-TEFb. Phosphorylation of a second highly conserved T-loop site, Ser-175, alters the competitive binding of Tat and the host recruitment factor bromodomain containing 4 (BRD4) to P-TEFb. Here, we investigated the intracellular mechanisms that regulate these key phosphorylation events required for HIV transcription. Molecular dynamics simulations revealed that the CDK9/CycT1 interface is stabilized by intramolecular hydrogen bonding of pThr-186 by an arginine triad and Glu-96 of CycT1. Arginine triad substitutions that disrupted CDK9/CycT1 assembly accumulated Thr-186-dephosphorylated CDK9 associated with the cytoplasmic Hsp90/Cdc37 chaperone. The Hsp90/Cdc37/CDK9 complex was also present in resting T cells, which lack CycT1. Hsp90 inhibition in primary T cells blocked P-TEFb assembly, disrupted Thr-186 phosphorylation, and suppressed proviral reactivation. The selective CDK7 inhibitor THZ1 blocked CDK9 phosphorylation at Ser-175, and in vitro kinase assays confirmed that CDK7 activity is principally responsible for Ser-175 phosphorylation. Mutation of Ser-175 to Lys had no effect on CDK9 kinase activity or P-TEFb assembly but strongly suppressed both HIV expression and BRD4 binding. We conclude that the transfer of CDK9 from the Hsp90/Cdc37 complex induced by Thr-186 phosphorylation is a key step in P-TEFb biogenesis. Furthermore, we demonstrate that CDK7-mediated Ser-175 phosphorylation is a downstream nuclear event essential for facilitating CDK9 T-loop interactions with Tat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app