Add like
Add dislike
Add to saved papers

Causality Patterns for Detecting Adverse Drug Reactions From Social Media: Text Mining Approach.

BACKGROUND: Detecting adverse drug reactions (ADRs) is an important task that has direct implications for the use of that drug. If we can detect previously unknown ADRs as quickly as possible, then this information can be provided to the regulators, pharmaceutical companies, and health care organizations, thereby potentially reducing drug-related morbidity and saving lives of many patients. A promising approach for detecting ADRs is to use social media platforms such as Twitter and Facebook. A high level of correlation between a drug name and an event may be an indication of a potential adverse reaction associated with that drug. Although numerous association measures have been proposed by the signal detection community for identifying ADRs, these measures are limited in that they detect correlations but often ignore causality.

OBJECTIVE: This study aimed to propose a causality measure that can detect an adverse reaction that is caused by a drug rather than merely being a correlated signal.

METHODS: To the best of our knowledge, this was the first causality-sensitive approach for detecting ADRs from social media. Specifically, the relationship between a drug and an event was represented using a set of automatically extracted lexical patterns. We then learned the weights for the extracted lexical patterns that indicate their reliability for expressing an adverse reaction of a given drug.

RESULTS: Our proposed method obtains an ADR detection accuracy of 74% on a large-scale manually annotated dataset of tweets, covering a standard set of drugs and adverse reactions.

CONCLUSIONS: By using lexical patterns, we can accurately detect the causality between drugs and adverse reaction-related events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app