Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparison of Genotypic and Phenotypic Correlations: Cheverud's Conjecture in Humans.

Genetics 2018 July
Accurate estimation of genetic correlation requires large sample sizes and access to genetically informative data, which are not always available. Accordingly, phenotypic correlations are often assumed to reflect genotypic correlations in evolutionary biology. Cheverud's conjecture asserts that the use of phenotypic correlations as proxies for genetic correlations is appropriate. Empirical evidence of the conjecture has been found across plant and animal species, with results suggesting that there is indeed a robust relationship between the two. Here, we investigate the conjecture in human populations, an analysis made possible by recent developments in availability of human genomic data and computing resources. A sample of 108,035 British European individuals from the UK Biobank was split equally into discovery and replication datasets. Seventeen traits were selected based on sample size, distribution, and heritability. Genetic correlations were calculated using linkage disequilibrium score regression applied to the genome-wide association summary statistics of pairs of traits, and compared within and across datasets. Strong and significant correlations were found for the between-dataset comparison, suggesting that the genetic correlations from one independent sample were able to predict the phenotypic correlations from another independent sample within the same population. Designating the selected traits as morphological or nonmorphological indicated little difference in correlation. The results of this study support the existence of a relationship between genetic and phenotypic correlations in humans. This finding is of specific interest in anthropological studies, which use measured phenotypic correlations to make inferences about the genetics of ancient human populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app