Add like
Add dislike
Add to saved papers

DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1.

Microsatellite instability (MSI) defines a subtype of colorectal cancer (CRC) with typical clinicopathologic characteristics. CRCs with MSI (MSI CRCs) frequently acquire accelerated carcinogenesis and 5-FU resistance, and the exact underlying mechanism remains incompletely understood. Our previous study has identified the microRNA (miRNA) expression profile in MSI CRCs. In this study, three miRNAs (miR-181a, miR-135a and miR-302c) were validated by qRT-PCR to be dramatically decreased in 67 CRC samples. Proliferation and apoptosis assays demonstrated that miR-181a/135a/302c function as tumor suppressors via repressing PLAG1/IGF2 signaling. Moreover, we presented compelling evidence that restoration of miR-181a/135a/302c expression promoted sensitivity of MSI CRC cells to 5-FU treatment. miR-181a/135a/302c exerted their effect on chemoresistance through attenuating PLAG1 expression. Notably, the hypermethylation status of MSI CRC accounts for the decrements of miR-181a/135a/302c. Our results contribute to a better understanding of the mechanism of chemoresistance in MSI CRCs, and provide a clue for digging the biomarkers and therapeutic targets for CRC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app