Add like
Add dislike
Add to saved papers

There is gold in them hills: Predicting potential acid mine drainage events through the use of chemometrics.

Disused mines and mining legacy require significant manpower to ameliorate the contaminated environmental surroundings following their disbanding coupled with extraordinary funding to manage these issues. Water (pH, temperature, dissolved oxygen, conductance, metals, sulphate) and total suspended solids (TSS) quality are environmental parameters that are affected by legacy mining activity and often require monitoring and rapid response if events (e.g. rainfall) occur which might affect the surrounding areas. In this study, we have monitored a famous mine site in Queensland, Australia for a number of water and sediment parameters known to be associated with acid mine drainage. This study performed analysis of water and sediment over three years, as well as rainfall data. Principal component analysis (PCA) and partial least squares (PLS) regression was undertaken to investigate the data obtained. It was found that the use of PCA can predict the effect of year and site on the environmental influence of the abandoned mine site, based on the combination of chemical properties and meteorological data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app