Add like
Add dislike
Add to saved papers

Bird diversity and dissimilarity show contrasting patterns along heavy metal pollution gradients in the Urals, Russia.

The effects of industrial pollution on bird diversity have been widely studied using traditional diversity measures, which assume all species to be equivalent. We compared species richness and Shannon index with distance-based measures of taxonomic, functional, and phylogenetic diversity (the abundance-weighted mean nearest taxon distances), which describe within-community dissimilarity at terminal branches. Analysis of dissimilarity can shed light on the processes underlying community assembly, i.e., environmental filtering decreases dissimilarity whereas competitive exclusion increases it. In the 2-year study near Karabash and Revda copper smelters in Russia, point counts of nesting birds and habitat descriptions were taken at 10 sites (40 plots) along each pollution gradient. The abundance and diversity of birds showed good repeatability in both regions. The total density of birds, number of species per plot, and Shannon diversity decreased at high toxic load in both regions. The taxonomic, functional, and phylogenetic nearest taxon distances showed the same pattern within regions. Species dissimilarity within communities increased with pollution in Karabash (due to loss of functionally similar species), but did not change in Revda (due to mass replacement of forest species by species of open habitats). Pollution-induced changes in bird communities near Karabash were greater due to the stronger deterioration of the forest ecosystems and less favorable natural conditions (more arid climate, lower diversity and vitality of the tree stand and understorey) compared to Revda. This study emphasizes the need for a multi-level approach to the analysis of bird communities using traditional indices of diversity, functional, taxonomic, or phylogenetic distances between species and environmental variables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app