Add like
Add dislike
Add to saved papers

Seasonal metabolic analysis of marine sediments collected from Moreton Bay in South East Queensland, Australia, using a multi-omics-based approach.

Anthropogenic effects of urban density have altered natural ecosystems. Such changes include eutrophication of freshwater and adjoining coastal habitats, and increased levels of inorganic nutrients and pollutants into waterways. In Australia, these changes are intensified by large-scale ocean-atmospheric events, leading to considerable abiotic stress on the natural flora and fauna. Bacterial communities in marine sediments from Moreton Bay (South East Queensland, Australia) were examined in order to assess the impact of rainfall changes, chemical pollution, and subsequent abiotic stress on living organisms within a marine ecosystem. Sediments were collected during the wet and dry seasons and analyzed using bacterial metagenomics and community metabolomics techniques. Physicochemical data were also analyzed to account for biological variance that may be due to non-rainfall-based abiotic stresses. Wet-dry seasonality was the dominant control on bacterial community structure and metabolic function. Changes in the availability of nutrients, organic matter and light appeared to be the major seasonal stressors. In contrast, urban and industrial pollutants appeared to be minor stressors at the sites sampled. During the wet season, the bacterial community composition reflected organisms that utilize biogeochemical pathways with fast kinetics, such as aerobic metabolism, direct assimilation of inorganic compounds, and primary production. The transition to the dry season saw the bacterial community composition shift towards organisms that utilize more complex organic energy sources, such as carbohydrates and fatty acids, and anaerobic redox processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app