Add like
Add dislike
Add to saved papers

Bisphenol A and Phthalates Modulate Peritoneal Macrophage Function in Female Mice Involving SYMD2-H3K36 Dimethylation.

Endocrinology 2018 May 2
Ample evidence suggests that environmental and occupational exposure to bisphenol A (BPA) and phthalate, two chemicals widely used in the plastics industry, disturbs homeostasis of innate immunity and causes inflammatory diseases. However, the underlying molecular mechanisms of these toxicants in the regulation of macrophage inflammatory functions remain poorly understood. In this study, we addressed the effect of chronic exposure to BPA or phthalate at levels relevant to human exposure, either in vitro or in vivo, on the inflammatory reprograming of peritoneal macrophages. Our studies revealed that BPA and phthalates adversely affected expression levels of the proinflammatory cytokines and mediators in response to lipopolysaccharide stimulation. Exposure to these toxicants also affected gene expression of scavenger receptors and phagocytic capacity of peritoneal macrophages. Our studies revealed that the epigenetic inhibitors differentially modulated target gene expression in these cells. Further analysis revealed that certain histone modification enzymes were aberrantly expressed in response to BPA or phthalate exposure, leading to alteration in the levels of H3K36 acetylation and dimethylation, two chromatin modifications that are critical for transcriptional efficacy and accuracy. Our results further revealed that silencing of H3K36-specific methyltransferase Smyd2 expression or inhibition of SMYD2 enzymatic activity attenuated H3K36 dimethylation and enhanced interleukin-6 and tumor necrosis factor-α expression but dampened the phagocytic capacity of peritoneal macrophages. In summary, our results indicate that peritoneal macrophages are vulnerable to BPA or phthalate at levels relevant to human exposure. These environmental toxicants affect phenotypic programming of macrophages via epigenetic mechanisms involving SMYD2-mediated H3K36 modification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app