Add like
Add dislike
Add to saved papers

Accurate estimation of a phase diagram from a single STM image.

We propose a new approach to constructing a phase diagram using the effective Hamiltonian derived only from a single real-space image produced by scanning tunneling microscopy (STM). Currently, there have been two main methods to construct phase diagrams in material science: ab initio calculations and CALPHAD with thermodynamic information obtained by experiments and/or theoretical calculations. Although the two methods have successfully revealed a number of unsettled phase diagrams, their results sometimes contradicted when it is difficult to construct an appropriate Hamiltonian that captures the characteristics of materials, e.g., for a system consisting of multiple-scale objects whose interactions are essential to the system's characteristics. Meanwhile, the advantage of our approach over existing methods is that it can directly and uniquely determine the effective Hamiltonian without any thermodynamic information. The validity of our approach is demonstrated through an Mg-Zn-Y long-period stacking-ordered structure, which is a challenging system for existing methods, leading to contradictory results. Our result successfully reproduces the ordering tendency seen in STM images that previous theoretical study failed to reproduce and clarifies its previously unknown phase diagram. Thus, our approach can be used to clear up contradictions shown by existing methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app