Add like
Add dislike
Add to saved papers

Better-ear glimpsing with symmetrically-placed interferers in bilateral cochlear implant users.

For a frontal target in spatially symmetrically placed interferers, normal hearing (NH) listeners can use "better-ear glimpsing" to select time-frequency segments with favorable signal-to-noise ratio in either ear. With an ideal monaural better-ear mask (IMBM) processing, some studies showed that NH listeners can reach similar performance as in the natural binaural listening condition, although interaural phase differences at low frequencies can further improve performance. In principle, bilateral cochlear implant (BiCI) listeners could use the same better-ear glimpsing, albeit without exploiting interaural phase differences. Speech reception thresholds of NH and BiCI listeners were measured in three interferers (speech-shaped stationary noise, nonsense speech, or single talker) either co-located with the target, symmetrically placed at ±60°, or independently presented to each ear, with and without IMBM processing. Furthermore, a bilateral noise vocoder based on the BiCI electrodogram was used in the same NH listeners. Headphone presentation and direct stimulation with head-related transfer functions for spatialization were used in NH and BiCI listeners, respectively. Compared to NH listeners, both NH listeners with vocoder and BiCI listeners showed strongly reduced binaural benefit from spatial separation. However, both groups greatly benefited from IMBM processing as part of the stimulation strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app