Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of human platelet lysate on the expansion and chondrogenic capacity of cultured human chondrocytes for cartilage cell therapy.

High hopes have been pinned on regenerative medicine strategies in order to prevent the progression of cartilage damage to osteoarthritis, particularly by autologous chondrocyte implantation (ACI). The loss of chondrocyte phenotype during in vitro monolayer expansion, a necessary step to obtain sufficient cell numbers, may be a key limitation in ACI. In this study, it was determined whether a shorter monolayer expansion approach could improve chondrogenic differentiation. The effects of two supplement types, foetal bovine serum (FBS) and Stemulate™ (a commercial source of human platelet lysate), on the expansion and re-differentiation potential of human chondrocytes, isolated from five individuals, were compared. Chondrocytes were expanded with 10 % FBS or 10 % Stemulate™. Pellets were cultured for 28 d in chondrogenic differentiation medium and assessed for the presence of cartilage matrix molecules and genes associated with chondrogenicity. Stemulate™ significantly enhanced the proliferation rate [average population doubling times: FBS, 25.07 ± 6.98 d (standard error of the mean, SEM) vs. Stemulate™, 13.10 ± 2.57 d (SEM)]. Sulphated glycosaminoglycans (sGAG), total collagen and qRT-PCR analyses of cartilage genes showed that FBS-expanded chondrocytes demonstrated significantly better chondrogenic capacity than Stemulate™-expanded chondrocytes. Histologically, FBS-expanded chondrocyte pellets appeared to be more stable, with a more intense staining for toluidine blue, indicating a greater chondrogenic capacity. Although Stemulate™ positively influenced chondrocyte proliferation, it had a negative effect on chondrogenic differentiation potential. This suggested that, in the treatment of cartilage defects, Stemulate™ might not be the ideal supplement for expanding chondrocytes (which maintained a chondrocyte phenotype) and, hence, for cell therapies (including ACI).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app