Read by QxMD icon Read

European Cells & Materials

A Levillain, R A Rolfe, Y Huang, Y C Iatridis, N C Nowlan
Congenital spine deformities may be influenced by movements in utero, but the effects of foetal immobility on spine and rib development remain unclear. The purpose of the present study was to determine (1) critical time-periods when rigid paralysis caused the most severe disruption in spine and rib development and (2) how the effects of an early, short-term immobilisation were propagated to the different features of spine and rib development. Chick embryos were immobilised once per single embryonic day (E) between E3 and E6 and harvested at E9...
January 15, 2019: European Cells & Materials
S Karbysheva, L Grigoricheva, V Golnik, S Popov, N Renz, A Trampuz
Microorganisms' ability to adhere and form a biofilm differs among biomaterials; however, clinical data are conflicting. Microbial adherence and biofilm formation on different biomaterials of explanted joint prosthesis components were investigated. Consecutive patients with explanted joint prosthesis were prospectively included. The bacterial load dislodged from retrieved prosthetic components was evaluated qualitatively and quantitatively in sonication-fluid cultures. For comparison between groups, one-way ANOVA and Wilcoxon signed-rank test were used...
January 14, 2019: European Cells & Materials
A Hannoun, G Ouenzerfi, L Brizuela, S Mebarek, C Bougault, M Hassler, Y Berthier, A-M Trunfio-Sfarghiu
In the context of shoulder surgical replacement, a new generation of spherical interposition implants has been developed, with the implant being a mobile spacer rubbing against the glenoid cartilage and humeral bone cavity. The aim of the present study was to compare pyrocarbon (PyC) versus cobalt-chromium (CoCr) implants, regarding preservation and regeneration of the surrounding tissues. The effect of the biomaterials on chondrocytes was analysed in vitro. Murine primary chondrocytes were grown on discs made of PyC or CoCr using two culture media to mimic either cartilage-like or bone-like conditions (CLC or BLC)...
January 7, 2019: European Cells & Materials
A Sadowska, T Kameda, O Krupkova, K Wuertz-Kozak
Intervertebral disc (IVD) cells are naturally exposed to high osmolarity and complex mechanical loading, which drive microenvironmental osmotic changes. Age- and degeneration-induced degradation of the IVD's extracellular matrix causes osmotic imbalance, which, together with an altered function of cellular receptors and signalling pathways, instigates local osmotic stress. Cellular responses to osmotic stress include osmoadaptation and activation of pro-inflammatory pathways. This review summarises the current knowledge on how IVD cells sense local osmotic changes and translate these signals into physiological or pathophysiological responses, with a focus on inflammation...
November 19, 2018: European Cells & Materials
S Khatab, G J van Osch, N Kops, Y M Bastiaansen-Jenniskens, P K Bos, J A Verhaar, M R Bernsen, G M van Buul
Mesenchymal stem cells (MSCs) represent a promising biological therapeutic option as an osteoarthritis (OA)-modifying treatment. MSCs secrete factors that can counteract inflammatory and catabolic processes and attract endogenous repair cells. The effects of intra-articular injection of MSC secretome on OA-related pain, cartilage damage, subchondral bone alterations and synovial inflammation were studied in a mouse collagenase-induced OA model. The MSC secretome was generated by stimulating human bone-marrow-derived MSCs with interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα)...
November 6, 2018: European Cells & Materials
D H Rosenzweig, R Fairag, A P Mathieu, L Li, D Eglin, M D'Este, T Steffen, M H Weber, J A Ouellet, L Haglund
Numerous studies show promise for cell-based tissue engineering strategies aiming to repair painful intervertebral disc (IVD) degeneration. However, clinical translation to human IVD repair is slow. In the present study, the regenerative potential of an autologous nucleus pulposus (NP)-cell-seeded thermoresponsive hyaluronic acid hydrogel in human lumbar IVDs was assessed under physiological conditions. First, agarose-encased in vitro constructs were developed, showing greater than 90 % NP cell viability and high proteoglycan deposition within HA-pNIPAM hydrogels following 3 weeks of dynamic loading...
October 25, 2018: European Cells & Materials
R Hartman, P Patil, R Tisherman, C St Croix, L J Niedernhofer, P D Robbins, F Ambrosio, B Van Houten, G Sowa, N Vo
Robust cellular bioenergetics is vital in the energy-demanding process of maintaining matrix homeostasis in the intervertebral disc. Age-related decline in disc cellular bioenergetics is hypothesised to contribute to the matrix homeostatic perturbation observed in intervertebral disc degeneration. The present study aimed to measure how ageing impacted disc cell mitochondria and bioenergetics. Age-related changes measured included matrix content and cellularity in disc tissue, as well as matrix synthesis, cell proliferation and senescence markers in cell cultures derived from annulus fibrosus (AF) and nucleus pulposus (NP) isolated from the discs of young (6-9 months) and older (36-50 months) New Zealand White rabbits...
October 18, 2018: European Cells & Materials
N Vanvelk, M Morgenstern, T F Moriarty, R G Richards, S Nijs, W J Metsemakers
A fracture-related infection (FRI) is an important complication that can lead to an increase in morbidity, mortality and economic costs. Preclinical in vivo models are critical in the evaluation of novel prevention and treatment strategies, yet it is important that these studies recapitulate the features of an FRI that make it such a clinical challenge. The aim of this systematic review was to survey the available preclinical models of FRIs and assess which of the key FRI-specific parameters are incorporated in these models...
October 17, 2018: European Cells & Materials
A Martin-Pena, R M Porter, G Plumton, T M McCarrel, A J Morton, M V Guijarro, S C Ghivizzani, B Sharma, G D Palmer
Successful clinical translation of mesenchymal stem cell (MSC)-based therapies for cartilage repair will likely require the implementation of standardised protocols and broadly applicable tools to facilitate the comparisons among cell types and chondroinduction methods. The present study investigated the utility of recombinant lentiviral reporter vectors as reliable tools for comparing chondrogenic potential among primary cell populations and distinguishing cellular-level variations of chondrogenic activity in widely used three-dimensional (3D) culture systems...
October 12, 2018: European Cells & Materials
J Xu, A Nyga, W Li, X Zhang, N Gavara, M M Knight, J C Shelton
Many studies report the adverse responses to metal-on-metal (MoM) hip prostheses, with tissues surrounding failed MoM hip prostheses revealing abundant tissue necrosis and fibrosis. These local effects appear to be initiated by metal ions released from the prosthesis causing the secretion of inflammatory mediators. However, little is known about the effect of the metal ions on tissue remodelling and pseudotumor formation, which are also associated with the failure of MoM hip prostheses. The peri-prosthetic soft tissue masses can lead to pain, swelling, limited range of joint movement and extensive tissue lesion...
October 2, 2018: European Cells & Materials
J Riegger, H G Palm, R E Brenner
Considering the poor intrinsic healing potential of articular cartilage, resident chondrogenic stem/progenitor cells (CSPCs) have gained attention in recent years. Although, CSPCs are attracted by a cartilage injury, knowledge about the post-traumatic behaviour and functional role of this cell population is fairly basic. The present study, not only elaborated on the regenerative capacities of CSPCs, but also illuminated potential immunomodulatory properties after cartilage trauma. Estimation of the CSPC population size within previously impacted cartilage explants by flow-cytometry revealed an increased percentage of CSPC-marker positive cells as compared to unimpacted tissue...
September 14, 2018: European Cells & Materials
L Germain, D Larouche, B Nedelec, I Perreault, L Duranceau, P Bortoluzzi, C Beaudoin Cloutier, H Genest, L Caouette-Laberge, A Dumas, A Bussière, E Boghossian, J Kanevsky, Y Leclerc, J Lee, M T Nguyen, V Bernier, B M Knoppers, V J Moulin, F A Auger
Split-thickness skin autografts (AGs) are the standard surgical treatment for severe burn injuries. However, the treatment of patients with substantial skin loss is limited by the availability of donor sites for skin harvesting. As an alternative to skin autografts, our research group developed autologous self-assembled skin substitutes (SASSs), allowing the replacement of both dermis and epidermis in a single surgical procedure. The aim of the study was to assess the clinical outcome of the SASSs as a permanent coverage for full-thickness burn wounds...
September 13, 2018: European Cells & Materials
R Castro-Viñuelas, C Sanjurjo-Rodríguez, M Piñeiro-Ramil, T Hermida-Gómez, I M Fuentes-Boquete, F J de Toro-Santos, F J Blanco-García, S M Díaz-Prado
The establishment of cartilage regenerative medicine is an important clinical issue, but the search for cell sources able to restore cartilage integrity proves to be challenging. Human mesenchymal stromal cells (MSCs) are prone to form epiphyseal or hypertrophic cartilage and have an age-related limited proliferation. On the other hand, it is difficult to obtain functional chondrocytes from human embryonic stem cells (ESCs). Moreover, the ethical issues associated with human ESCs are an additional disadvantage of using such cells...
September 11, 2018: European Cells & Materials
J Antons, M G Marascio, P Aeberhard, G Weissenberger, N Hirt-Burri, L A Applegate, P E Bourban, D P Pioletti
Tissue decellularisation has gained much attention in regenerative medicine as an alternative to synthetic materials. In decellularised tissues, biological cues can be maintained and provide cellular environments still unmet by synthetic materials. Supercritical CO2 (scCO2 ) has recently emerged as a promising alternative decellularisation technique to aggressive detergents; in addition, scCO2 provides innate sterilisation. However, to date, decellularisation with scCO2 is limited to only a few tissue types with low cellular density...
September 4, 2018: European Cells & Materials
T Onishi, T Shimizu, M Akahane, S Omokawa, A Okuda, T Kira, Y Inagak, Y Tanaka
The application of extracellular matrix (ECM) sheets without a scaffold is not extensively reported in bone regenerative medicine. The aim of the present study was to demonstrate that an osteogenic ECM sheet (OECMS) can retain ECM integrity and growth factors to enhance bone formation in a rat non-union model. OECMS was produced from osteogenic cell sheets (OCS). Collagen and growth factor [bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factors (VFGFs), basic fibroblast growth factor (bFGF) and transforming growth factor β1 (TGF-β1)] concentrations in the OECMS were quantified by enzyme-linked immunosorbent assay (ELISA)...
August 2, 2018: European Cells & Materials
J Melke, F Zhao, B van Rietbergen, K Ito, S Hofmann
Spinner flask bioreactors have often been employed for bone tissue engineering. However, the reasons for their success in facilitating bone growth remain inconclusive. It was hypothesised that engineered bone tissue formation can be attributed to mechanical stimuli, which can be predicted in the tissue engineered construct. To test the hypothesis and draw conclusions as to how mechanical stimulation affects cell behaviour, a multi- disciplinary approach using cell culture experiments and computational fluid dynamics (CFD) to simulate the complex flow within the spinner flask and scaffold was employed...
July 31, 2018: European Cells & Materials
R Bell, M A Robles-Harris, M Anderson, D Laudier, M B Schaffler, E L Flatow, N Andarawis-Puri
Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve the mechanical properties of fatigue-damaged tendons...
July 30, 2018: European Cells & Materials
A K Haudenschild, B E Sherlock, X Zhou, J C Hu, J K Leach, L Marcu, K A Athanasiou
Tissue engineers utilize a battery of expensive, time-consuming and destructive techniques to assess the composition and function of engineered tissues. A nondestructive solution to monitor tissue maturation would reduce costs and accelerate product development. As a first step toward this goal, two nondestructive, label-free optical techniques, namely multispectral fluorescent lifetime imaging (FLIm) and time-resolved fluorescence spectroscopy (TRFS), were investigated for their potential in evaluating the biochemical and mechanical properties of articular cartilage...
July 27, 2018: European Cells & Materials
C L Yang, Y H Sun, W H Yu, X Z Yin, J Weng, B Feng
Pro-inflammatory phenotype (M1) macrophages initiate angiogenesis, while their prolonged activation can induce chronic inflammation. Anti-inflammatory phenotype (M2) macrophages promote vessel maturation and tissue regeneration. Biomaterials which can promote M2 polarisation after appropriate inflammation should enhance angiogenesis and wound healing. Herein, Interleukin-4 (IL-4), an anti-inflammatory cytokine, was adsorbed onto a titanium surface. Then, a genipin cross-linked gelatine hydrogel was coated onto the surface to delay IL-4 release...
July 25, 2018: European Cells & Materials
M M Gao, Q N Su, T Z Liang, J X Ma, T Z Liang, M J Stoddart, R G Richards, Z Y Zhou, N X Zou
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the main source of extracellular pyrophosphate. Along with tissue-nonspecific alkaline phosphatase (TNAP), ENPP1 plays an important role in balancing bone mineralisation. Although well established in pre-osteoblasts, the regulating mechanisms of ENPP1 in osteoblasts and osteocytes remain largely unknown. Using bioinformatic methods, osterix (Osx), an essential transcription factor in osteoblast differentiation and osteocyte function, was found to have five predicted binding sites on the ENPP1 promoter...
July 25, 2018: European Cells & Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"