Add like
Add dislike
Add to saved papers

Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.

Acta Biotheoretica 2018 April 27
Computational drug repositioning has been proven as a promising and efficient strategy for discovering new uses from existing drugs. To achieve this goal, a number of computational methods have been proposed, which are based on different data sources of drugs and diseases. These methods approach the problem using either machine learning- or network-based models with an assumption that similar drugs can be used for similar diseases to identify new indications of drugs. Therefore, similarities between drugs and between diseases are usually used as inputs. In addition, known drug-disease associations are also needed for the methods as prior information. It should be noted that those associations are still not well established due to the fact that many of marketed drugs have been withdrawn and this could affect the outcome of the methods. In this study, we propose a novel method named RLSDR (Regularized Least Square for Drug Repositioning) to find new uses of drugs. More specifically, it relies on a semi-supervised learning model, Regularized Least Square, thus it does not require definition of non-drug-disease associations as previously proposed machine learning-based methods. In addition, the similarity between drugs measured by chemical structures of drug compounds and the similarity between diseases which share phenotypes can be represented in a form of either similarity network or similarity matrix as inputs of the method. Moreover, instead of using a gold-standard set of known drug-disease associations, we construct an artificial set of the associations based on known disease-gene and drug-target associations. Experiment results demonstrate that RLSDR achieves better prediction performance on the artificial set of drug-disease associations than that on the gold-standard ones in terms of area under the Receiver Operating Characteristic (ROC) curve (AUC). In addition, it outperforms two representative network-based methods irrespective of the prior information of drug-disease associations. Novel indications for a number of drugs are also identified and validated by evidences from a different data resource.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app