Add like
Add dislike
Add to saved papers

WWP2 is a physiological ubiquitin ligase for phosphatase and tensin homolog (PTEN) in mice.

The tumor suppressor phosphatase and tensin homolog (PTEN) plays a central role in regulating phosphatidylinositol 3-kinase (PI3K) signaling, and its gene is very frequently mutated in various human cancers. Numerous studies have revealed that PTEN levels are tightly regulated by both transcriptional and posttranslational modifications, with especially ubiquitylation significantly regulating PTEN protein levels. Although several ubiquitin ligases have been reported to mediate PTEN ubiquitylation in vitro , the ubiquitin ligase that promotes PTEN degradation in vivo has not been reported. Here we took advantage of specific knockout mouse models to demonstrate that WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) promotes PTEN degradation under physiological conditions, whereas another ubiquitin ligase, carboxyl terminus of Hsp70-interacting protein (CHIP), had no such effect. WWP2 knockout mice exhibited reduced body size, elevated PTEN protein levels, and reduced phosphorylation levels of the serine/threonine kinase and PTEN target AKT. In contrast, we observed no elevation of PTEN protein levels in CHIP knockout tissues and mouse embryonic fibroblasts. Furthermore, PTEN protein levels in CHIP/WWP2 double knockout mice were very similar to those in WWP2 single knockout mice and significantly higher than in WT and CHIP knockout mice. Our results demonstrate that WWP2, rather than CHIP, is an ubiquitin ligase that promotes PTEN degradation in vivo Considering PTEN's significant role in tumor development, we propose that WWP2 may be a potential target for fine-tuning PTEN levels in anticancer therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app