Add like
Add dislike
Add to saved papers

Temperature dependent separation of immiscible polymer blend in a melted state.

The density and the spectral fingerprint of a compounded blend or composite vary widely depending on the type of the components and their composition. However, the currently used polymer separation techniques, such as density-based and optical sorting systems are not suitable for recovering these materials fully due to the physical-chemical bonding between the components. The application of a novel separation principle creates the opportunity to enrich the blend fractions to neat, homogeneous zones in a melted state by utilising centrifugal force. In this study three different types of plastics: high density polyethylene, polystyrene and polyethylene terephthalate were deeply investigated in order to understand the separability of their blends as a function of rotation time and melt temperature. The results showed that the separation of polymer mixtures and blends depends strongly on the viscosity and bulk density at a given temperature, and the initial particle size also has a significant impact.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app