Add like
Add dislike
Add to saved papers

Ultrafast Single-Band Upconversion Luminescence in a Liquid-Quenched Amorphous Matrix.

Achieving single-band upconversion is a challenging but rewarding approach to attain optimal performance in diverse applications, such as multiplexed molecular imaging, security coding, and nonlinear photonic devices. Here, highly efficient single-band upconversion luminescence in the green spectral regime (16.4 times increase in emission at 525 nm) accomplished by realizing minimal energy loss from two-photon upconversion in a newly synthesized liquid-quenched amorphous matrix is reported. In contrast to previously reported single-band upconversion, this phenomenon originates from the elevated transition probability of the host sensitive transition via changes in the host matrix's microstructure. The elevated transition probability facilitates ultrafast decay of upconversion luminescence with decay times as short as 0.2 µs, the fastest decay ever reported. The material in this study therefore has strong potential for use in photonic devices demanding high upconversion efficiency with a fast response time, which to date has been inaccessible using upconversion materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app