Add like
Add dislike
Add to saved papers

Age-Related Increase of Insulin-Degrading Enzyme Is Inversely Correlated with Cognitive Function in APPswe/PS1dE9 Mice.

BACKGROUND Insulin-degrading enzyme (IDE) is an important regulator for Ab clearance and diabetes. Although it is indispensable in removing plaques related to onset Alzheimer's disease (AD) and in degrading insulin related to diabetes, there have been few studies on the dynamic level of IDE in different stages of AD. MATERIAL AND METHODS The present study explored the level IDE protein in different stages of APPswe/PS1dE9 mice and their correlations with cognitive decline. The 4-month-old, 10-month-old, and 18-month-old mice were used as the different age stages of mice. Cognitive function was evaluated using the Morris water maze test. We also observed the level of Ab plaques in brain regions of different stages. RESULTS The data revealed that the expression of IDE was dramatically higher than in age-matched wild mice at the age of 10 months and 18 months. In terms of distribution, Aβ plaques were deposited mostly in the cortex and hippocampus, especially in 10-month-old and 18-month-old APPswe/PS1dE9 mice. The cognitive function of 4-month-old APPswe/PS1dE9 mice was not significantly differ in spatial learning. However, the cognitive function, both spatial learning and spatial memory, was dramatically lower in 10-month-old and 18-month-old groups. CONCLUSIONS There was a positive correlation between the expression of IDE and spatial memory in 10-month-old and 18-month-old APPswe/PS1dE9 mice. The study of this protein may provide reference values for the further study of IDE in Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app