Add like
Add dislike
Add to saved papers

Ultrasound-electrospinning-assisted fabrication and sensing evaluation of a novel membrane as ultrasensitive sensor for copper (II) ions detection in aqueous environment.

The present study has reported an optimized fabrication and application of a novel PVA/TEOS/Schiff base nanofibers membrane as a highly sensitive copper (II) ions in aqueous environment. Here in, for first time, an ultrasound-assisted synthesized symmetric Schiff base has been immobilized on a hybrid polyvinyl alcohol (PVA) and TEOS using electrospinning technique for detection and filtration of copper ions. For this purpose, various working parameters were evaluated and finally the optimized nano fibers membrane was synthesized with 72 nm thickness and PVA/TEOS/Schiff base ratio of (wt%) 8:6:1. The optimized sample named PTLNFM has been employed successfully as an ultra sensitive chemosensor for Cu (II) detection in real samples. The immobilized Schiff base used as a chelating agent could detect copper (II) in the range from 9.34 × 10-8 to 1.15 × 10-5  mol L-1 with the following correlation equation: Absorbance = 0.066 [Cu2+ ] × 10-6  + 0.095 and R2  = 0.992 and LOD of 1.27 × 10-8  mol L-1 which was lower than most of the reported detection limits in the previous literatures. Validity of this method has been carried out by analysis of Cu2+ in real samples with satisfying recoveries of over 96.11-99.24%.The developed membrane could be offered for diverse use such as medical or industrial applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app