Add like
Add dislike
Add to saved papers

Preparation of a novel lipid-core micelle using a low-energy emulsification method.

High-energy methods for the manufacturing of nanomedicines are widely used; however, interest in low-energy methods is increasing due to their simplicity, better control over the process, and energy-saving characteristics during upscaling. Here, we developed a novel lipid-core micelle (LCM) as a nanocarrier to encapsulate a poorly water-soluble drug, nifedipine (NFD), by hot-melt emulsification, a low-energy method. LCMs are self-assembling colloidal particles composed of a hydrophobic core and a hydrophilic shell. Hybrid materials, such as Gelucire 44/14, are thus excellent candidates for their preparation. We characterized the obtained nanocarriers for their colloidal properties, drug loading and encapsulation efficiency, liquid state, stability, and drug release. The low-energy method hot-melt emulsification was successfully adapted for the manufacturing of small and narrowly dispersed LCMs. The obtained LCMs had a small average size of ~ 11 nm and a narrow polydispersity index (PDI) of 0.228. These nanocarriers were able to increase the amount of NFD dispersible in water more than 700-fold. Due to their sustained drug release profile and the PEGylation of Gelucire 44/14, these nanocarriers represent an excellent starting point for the development of drug delivery systems designed for long circulation times and passive targeting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app