Add like
Add dislike
Add to saved papers

Sex steroids drive the remodeling of oviductal extracellular matrix in cattle.

Biology of Reproduction 2018 September 2
The extracellular matrix (ECM) is a group of molecules that offer structural and biochemical support to cells and interact with them to regulate their function. Also, growth factors (GFs) stored in the ECM can be locally released during ECM remodeling. Here, we hypothesize that the balance between ECM components and remodelers is regulated according to the ovarian steroid milieu to which the oviduct is exposed during the periovulatory period. Follicular growth was manipulated to generate cows that ovulated small follicles (SF-small corpus luteum [SCL]; n = 20) or large follicles (LF-large corpus luteum [LCL]; n = 21) and possess corresponding Estradiol (E2) and Progesterone (P4) plasmatic concentrations. Ampulla and isthmus samples were collected on day 4 (day 0 = ovulation induction) and immediately frozen or fixed. The transcriptional profile (n = 3/group) was evaluated by RNA sequencing. MMP Antibody Array was used to quantify ECM remodelers' protein abundance and immunohistochemistry to quantify type I collagen. Transcriptome analysis revealed the over-representation of ECM organization and remodeling pathways in the LF-LCL group. Transcription of ECM components (collagens), remodelers (ADAMs and MMPs), and related GFs were upregulated in LF-LCL. Protein intensities for MMP3, MMP8, MMP9, MMP13, and TIMP4 were greater for the LF-LCL group. Type I collagen content in the mucosa was greater in SF-SCL group. In conclusion, that the earlier and more intense exposure to E2 and P4 during the periovulatory period in LF-LCL animals stimulates ECM remodeling. We speculate that differential ECM regulation may contribute to oviductal receptivity to the embryo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app