Add like
Add dislike
Add to saved papers

Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections.

Phytomedicine 2018 March 16
BACKGROUND: Acorus calamus l. (Acoraceae) is a well-known traditional Chinese medicinal plant, whose root are historically mainly used to treat neurodegenerative diseases, and for cholera treatment. This datum strongly indicates the antimicrobial activity of A. calamus.

PURPOSE: Our goal is to find the active constituents of A. calamus to treat dengue virus (DENV) infections, and to study the effects and mechanisms of these active substances.

METHODS: The root of A. calamus was extracted by ethanol. Mosquito larva C6/36 cells were used for DENV2 replication and transfection host. Mouse kidney fibroblast cells (BHK-21) were used as a host cell to study the infection ability of the virus. DENV2-induced cytopathic effect (CPE) and plaque assay were used to evaluate the inhibitory effect of A. calamus extracts on DENV2 infectivity inhibition. The levels of E and NS1 protein expression were measured by real-time PCR and western blot assays.

RESULTS: 12 compounds were isolated from ethanol extract of A. calamus root, tatanan A showed the best anti-DENV ability among these 12 compounds, which significantly alleviated DENV2-induced CPE and cytotoxicity effects, with an EC50 of 3.9 µM. In addition, RNA replication assay further confirmed the antivirus ability of tatanan A. Time-addition assay showed that tatanan A affected the early stage of viral RNA replication, which in turn inhibited mRNA and protein levels of DENV2.

CONCLUSIONS: These results demonstrated the anti-DENV2 effect of tatanan A, in inhibiting DENV2 RNA replication and infections. In summary, tatanan A was found to be a novel natural DENV inhibitor and a potential candidate for the treatment of DENV infectious disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app