Add like
Add dislike
Add to saved papers

A distributed computational model for estimating room air level of constituents due to aerosol emission from e-vapor product use.

Most indoor air quality models reported in the literature are well-mixed models. A well-mixed model estimates the room average concentration of constituents from sources. It does not provide information on (1) how far and how fast the emitted chemicals travel in the indoor space? And (2) how the concentration changes as a function of distance from the emission source? We developed a distributed model, using computational fluid dynamics and thermodynamics principles, which allows for aerosol dispersion in an indoor space and includes evaporation and condensation of constituents in a multi-compound aerosol mixture. The distributed model can estimate the spatial and temporal variations of the concentration of individual constituents present in the emitted aerosol in vapor and particulate phases separately. Results from the model were compared with the published experimental data and were found to be in good agreement. A sensitivity analysis was performed to evaluate the impact of various parameters that affect the air level of the emitted constituents within an indoor space, including rate of emission, the rate of air exchange, etc. The model can also be used to estimate the level of second hand exposure in a confined space where e-vapor products (EVPs) are used.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app