Add like
Add dislike
Add to saved papers

The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint.

Scientific Reports 2018 April 13
Osteoarthritis is traditionally associated with cartilage degeneration although is now widely accepted as a whole-joint disease affecting the entire osteochondral unit; however site-specific cartilage and bone material properties during healthy ageing and disease are absent limiting our understanding. Cadaveric specimens (n = 12; 31-88 years) with grades 0-4 osteoarthritis, were dissected and spatially correlated cartilage, subchondral and trabecular bone samples (n = 8 per cadaver) were harvested from femoral and tibial localities. Nanoindentation was utilised to obtain cartilage shear modulus (G') and bone elastic modulus (E). Cartilage G' is strongly correlated to age (p = 0.003) and osteoarthritis grade (p = 0.007). Subchondral bone E is moderately correlated to age (p = 0.072) and strongly correlated to osteoarthritis grade (p = 0.013). Trabecular bone E showed no correlation to age (p = 0.372) or osteoarthritis grade (p = 0.778). Changes to cartilage G' was significantly correlated to changes in subchondral bone E (p = 0.007). Results showed preferential medial osteoarthritis development and moderate correlations between cartilage G' and sample location (p = 0.083). Also demonstrated for the first time was significant correlations between site-matched cartilage and subchondral bone material property changes during progressive ageing and osteoarthritis, supporting the role of bone in disease initiation and progression. This clinically relevant data indicates a causative link with osteoarthritis and medial habitual loading.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app