Add like
Add dislike
Add to saved papers

Wavenumber domain analysis of surface acoustic wave scattering from localized gratings on layered piezoelectric substrate.

Ultrasonics 2018 August
This paper proposes a general finite element method (FEM)-based wavenumber domain analysis (WDA) to calculate scattering characteristics of surface acoustic wave (SAW) on arbitrary piezoelectric substrates. We add a damping loss mechanism (DLM) to the SAW injection port to avoid interferences from the incident and backscattered modes. After checking the validity of the proposed method, we calculate and study Sezawa mode scattering using a small number of electrodes on the ScAlN/3CSiC structure for demonstration. The frequency dependences of reflection and transmission coefficients and that of the power dissipation ratio for different termination conditions and electrode thicknesses are calculated. Also, the influence of base substrate materials and that of gratings on scattering parameters are explored. Investigation results demonstrate that high reflectivity with suppressed mode conversion can be obtained for the ScAlN-based layer structure if a base substrate with an extremely large velocity is used and if proper grating design is applied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app