Add like
Add dislike
Add to saved papers

Hydrothermal synthesis of hierarchically structured birnessite-type MnO 2 /biochar composites for the adsorptive removal of Cu(II) from aqueous media.

In this study, hierarchical birnessite-type MnO2 /biochar composites (δ-MnO2 /BCs) were synthesized by a hydrothermal technique, and their Cu(II) removal performance was examined in aqueous solution. Morphological characterization confirmed that a three-dimensional flower-like structure of δ-MnO2 was formed, which results in effective adsorption affinity towards Cu(II). The effects of solution pH, adsorbent dosage, and ionic strength on the adsorption behavior of the prepared materials were systemically investigated. The adsorption kinetics indicated that Cu(II) adsorption onto δ-MnO2 /BCs follows a pseudo-second-order model. Analysis of possible adsorption/diffusion mechanisms suggested that the adsorption process is controlled by both film and pore diffusion. The adsorption isotherms fit closely to the Sips isotherm model, and the theoretical maximum adsorption capacities of Cu(II) on the synthesized δ-MnO2 /BCs are approximately 124, 154, 199, and 230 mg/g at 15, 25, 35, and 45 °C, respectively. Adsorption-desorption studies demonstrated the recyclability of the δ-MnO2 /BCs for the removal of Cu(II) from aqueous solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app