Add like
Add dislike
Add to saved papers

Physical properties of DNA may direct the binding of nucleoid-associated proteins along the E. coli genome.

Nucleoid-associated proteins (NAPs) play important roles in both chromosome packaging and gene regulation in bacteria. The underlying mechanisms, however, remain elusive particularly for how NAPs contribute to chromosome packaging. We report here a characterization of the binding sites for several major NAPs in E. coli, namely HNS, IHF, Fis, Dps and a non-NAP protein, FNR, in terms of the physical properties of their binding DNA. Our study shows that (i) as compared with flanking regions, the binding sites for IHF, Fis and FNR tend to have high intrinsic curvature, while no characterized pattern of intrinsic curvature distribution around those of HNS and Dps; (ii) all the binding sites analyzed in this study except those of HNS are characterized by high structural flexibility; (iii) the intrinsic curvature and flexibility at the binding sites for Fis and IHF are found to be coupled with the sequence specificity required in their binding, while the physical properties of the binding regions for both Dps and FNR are independent of sequence specificity. Our data suggest that physical properties of DNA sequence may contribute to binding of NAPs and mediate genome packaging and transcriptional regulation of the downstream genes. Our results should be informative for prediction of NAPs binding sites and understanding of the bacterial chromosome packaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app