Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Large Conductance Calcium- and Voltage-activated Potassium Channel (BK) and Epilepsy.

BACKGROUND & OBJECTIVE: The large conductance, calcium- and voltage-activated potassium channels (BK) are widely distributed channel proteins which exist in virtually every cell type of mammals and function to influence membrane excitability and Ca2+ signaling. BK channels can be activated by the increase of the intracellular Ca2+ concentration, a consequence of neuronal excitation, and then terminate the action potential with the outward K+ flux. Moreover, after-hyperpolarization induced by BK channels closes Cav channels and thus precludes excessive Ca2+ influx. Considering this negative feedback effect, BK channel seemly acts to decrease membrane excitability in order to prevent hyperexcitation which is a typical characteristic of epilepsy. Therefore, one may reasonably suppose that membrane excitability would increase when the BK channel activity decreases. However, the membrane excitability displays elevation when the function of BK channel is under either upregulated or down-regulated status. Factors altering the activity of BK channels, such as gene mutations, polymorphism, channel openers or blockers that lead to loss- or gain-of-function, have all been linked to epilepsy onset.

CONCLUSION: The aim of this review is to summarize existing knowledge and recent findings on the molecular properties, signaling complex and channel dysfunction of the BK channels with a particular attention to the possible relevance to the pathophysiology of epilepsy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app