Add like
Add dislike
Add to saved papers

Enhanced polymalic acid production from the glyoxylate shunt pathway under exogenous alcohol stress.

Polymalic acid (PMA) is a water-soluble biopolymer produced by the yeast-like fungus Aureobasidium pullulans. In this study, the physiological response of A. pullulans against exogenous alcohols stress was investigated. Interestingly, ethanol stress was an effective inducer of enhanced PMA yield, although cell growth was slightly inhibited. The stress-responsive gene malate synthase (mls), which is involved in the glyoxylate shunt, was identified and was found to be regulated by exogenous ethanol stress. Therefore, an engineered strain, YJ-MLS, was constructed by overexpressing the endogenous mls gene, which increased the PMA titer by 16.2% compared with the wild-type strain. Following addition of 1% (v/v) of ethanol, a high PMA titer of 40.0 ± 0.38 g/L was obtained using batch fermentation with the mutant YJ-MLS in a 5-L fermentor, with a strongest PMA productivity of 0.56 g/L h. This study was the interesting report to show strengthening of the carbon metabolic flow from the glyoxylate shunt for PMA synthesis, and also provided a new sight for re-recognizing the regulatory behavior of alcohol stress in eukaryotic microbes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app