Add like
Add dislike
Add to saved papers

The Role of Strigolactone in the Cross-Talk Between Arabidopsis thaliana and the Endophytic Fungus Mucor sp.

Over the last years the role of fungal endophytes in plant biology has been extensively studied. A number of species were shown to positively affect plant growth and fitness, thus attempts have been made to utilize these microorganisms in agriculture and phytoremediation. Plant-fungi symbiosis requires multiple metabolic adjustments of both of the interacting organisms. The mechanisms of these adaptations are mostly unknown, however, plant hormones seem to play a central role in this process. The plant hormone strigolactone (SL) was previously shown to activate hyphae branching of mycorrhizal fungi and to negatively affect pathogenic fungi growth. Its role in the plant-endophytic fungi interaction is unknown. The effect of the synthetic SL analog GR24 on the endophytic fungi Mucor sp. growth, respiration, H2 O2 production and the activity of antioxidant enzymes was evaluated. We found fungi colony growth rate was decreased in a GR24 concentration dependent manner. Additionally, the fungi accumulated more H2 O2 what was accompanied by an altered activity of antioxidant enzymes. Symbiosis with Mucor sp. positively affected Arabidopsis thaliana growth, but SL was necessary for the establishment of the beneficial interaction. A. thaliana biosynthesis mutants max1 and max4 , but not the SL signaling mutant max2 did not develop the beneficial phenotype. The negative growth response was correlated with alterations in SA homeostasis and a significant upregulation of genes encoding selected plant defensins. The fungi were also shown to be able to decompose SL in planta and to downregulate the expression of SL biosynthesis genes. Additionally, we have shown that GR24 treatment with a dose of 1 μM activates the production of SA in A. thaliana . The results presented here provide evidence for a role of SL in the plant-endophyte cross-talk during the mutualistic interaction between Arabidopsis thaliana and Mucor sp.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app