Add like
Add dislike
Add to saved papers

Generalized 3D Printing of Graphene-Based Mixed-Dimensional Hybrid Aerogels.

ACS Nano 2018 April 25
Graphene-based mixed-dimensional materials hybridization is important for a myriad of applications. However, conventional manufacturing techniques face critical challenges in producing arbitrary geometries with programmable features, continuous interior networks, and multimaterials homogeneity. Here we propose a generalized three-dimensional (3D) printing methodology for graphene aerogels and graphene-based mixed-dimensional (2D + nD, where n is 0, 1, or 2) hybrid aerogels with complex architectures, by the development of hybrid inks and printing schemes to enable mix-dimensional hybrids printability, overcoming the limitations of multicomponents inhomogeneity and harsh post-treatments for additives removal. Importantly, nonplanar designed geometries are also demonstrated by shape-conformable printing on curved surfaces. We further demonstrate the 3D-printed hybrid aerogels as ultrathick electrodes in a symmetric compression tolerant microsupercapacitor, exhibiting quasi-proportionally enhanced areal capacitances at high levels of mass loading. The excellent performance is attributed to the sufficient ion- and electron-transport paths provided by the 3D-printed highly interconnected networks. The encouraging finding indicates tremendous potentials for practical energy storage applications. As a proof of concept, this general strategy provides avenues for various next-generation complex-shaped hybrid architectures from microscale to macroscale, for example, seawater desalination devices, electromagnetic shielding systems, and so forth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app