Add like
Add dislike
Add to saved papers

Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography.

Swept-source-based optical coherence tomography (SS-OCT) has demonstrated the unique advantages for fast imaging rate and long imaging distance; however, limited axial resolution and complex phase noises restrict swept-source optical Doppler tomography (SS-ODT) for quantitative capillary blood flow imaging in the deep cortices. Here, the wavelength-dividing-multiplexing optical Doppler tomography (WDM-ODT) method that divides a single interferogram into multiple phase-correlated interferograms is proposed to effectively enhance the sensitivity for cerebral capillary flow imaging. Both flow phantom and in vivo mouse brain imaging studies show that WDM-ODT is able to significantly suppress background phase noise and image cerebral capillary flow down to the vessel size of 5.6 μm. Comparison between the wavelength-division-multiplexing SS-ODT and the spectral-domain ultrahigh-resolution ODT (uODT) reveals that SS-ODT outpaces uODT by extending the capillary flow imaging depth to 1.6 mm in mouse cortex. Thus, for the first time, quantitative capillary flow imaging is demonstrated using SS-ODT in the deep cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app