Add like
Add dislike
Add to saved papers

Nanomagnetic Modulation of Tumor Redox State.

Modulation of reactive oxygen and nitrogen species in a tumor could be exploited for nanotherapeutic benefits. We investigate the antitumor effect in Walker-256 carcinosarcoma of magnetic nanodots composed of doxorubicin-loaded Fe3 O4 nanoparticles combined with electromagnetic fields. Treatment using the magnetic nanodot with the largest hysteresis loop area (3402 erg/g) had the greatest antitumor effect with the minimum growth factor 0.49 ± 0.02 day-1 (compared to 0.58 ± 0.02 day-1 for conventional doxorubicin). Electron spin resonance spectra of Walker-256 carcinosarcoma treated with the nanodots, indicate an increase of 2.7 times of free iron (that promotes the formation of highly reactive oxygen species), using the nanodot with the largest hysteresis loop area, compared to conventional doxorubicin treatment as well as increases in ubisemiquinone, lactoferrin, NO-FeS-proteins. Hence, we provide evidence that the designed magnetic nanodots can modulate the tumor redox state. We discuss the implications of these results for cancer nanotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app