Add like
Add dislike
Add to saved papers

Effect of Vertical Annealing on the Nitrogen Dioxide Response of Organic Thin Film Transistors.

Nanomaterials 2018 March 30
Nitrogen dioxide (NO₂) sensors based on organic thin-film transistors (OTFTs) were fabricated by conventional annealing (horizontal) and vertical annealing processes of organic semiconductor (OSC) films. The NO₂ responsivity of OTFTs to 15 ppm of NO₂ is 1408% under conditions of vertical annealing and only 72% when conventional annealing is applied. Moreover, gas sensors obtained by vertical annealing achieve a high sensing performance of 589% already at 1 ppm of NO₂, while showing a preferential response to NO₂ compared with SO₂, NH₃, CO, and H₂S. To analyze the mechanism of performance improvement of OTFT gas sensors, the morphologies of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) films were characterized by atomic force microscopy (AFM) in tapping mode. The results show that, in well-aligned TIPS-pentacene films, a large number of effective grain boundaries inside the conducting channel contribute to the enhancement of NO₂ gas sensing performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app