Add like
Add dislike
Add to saved papers

Tlr1612 is the major repressor of cell aggregation in the light-color-dependent c-di-GMP signaling network of Thermosynechococcus vulcanus.

Scientific Reports 2018 March 29
Cyclic diguanylate (c-di-GMP) is a bacterial second messenger involved in sessile/motile lifestyle transitions. We previously reported that c-di-GMP is a crucial inducer of cell aggregation of the cyanobacterium Thermosynechococcus vulcanus. The three cooperating cyanobacteriochrome photoreceptors (SesA/B/C) regulate cell aggregation in a light color-dependent manner by synthesizing/degrading c-di-GMP. Although a variety of c-di-GMP signaling proteins are encoded in cyanobacterial genomes, how c-di-GMP signaling networks are organized remains elusive. Here we experimentally demonstrate that the cellulose synthase Tll0007, which is essential for cell aggregation, binds c-di-GMP although the affinity is low (Kd  = 63.9 ± 5.1 µM). We also show that SesA-the main trigger of cell aggregation-is subject to strict product feedback inhibition (IC50 = 1.07 ± 0.13 µM). These results suggest that SesA-produced c-di-GMP may not directly bind to Tll0007. We therefore systematically analyzed all 10 of the genes encoding proteins containing a c-di-GMP synthesis/degradation domain. We identified Tlr1612, harboring both domains, as the major repressor of cell aggregation under the repressing teal-green light irradiation. tlr1612 acts downstream of sesA and is not regulated transcriptionally by light color, suggesting that Tlr1612 may be involved in c-di-GMP amplification in the signaling cascade. Post-transcriptional control is likely crucial for the light-regulated c-di-GMP signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app