Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Endoplasmic reticulum-localized CCX2 is required for osmotolerance by regulating ER and cytosolic Ca 2+ dynamics in Arabidopsis .

Ca2+ signals in plant cells are important for adaptive responses to environmental stresses. Here, we report that the Arabidopsis CATION/Ca2+ EXCHANGER2 (CCX2), encoding a putative cation/Ca2+ exchanger that localizes to the endoplasmic reticulum (ER), is strongly induced by salt and osmotic stresses. Compared with the WT, AtCCX2 loss-of-function mutant was less tolerant to osmotic stress and displayed the most noteworthy phenotypes (less root/shoot growth) during salt stress. Conversely, AtCCX2 gain-of-function mutants were more tolerant to osmotic stress. In addition, AtCCX2 partially suppresses the Ca2+ sensitivity of K667 yeast triple mutant, characterized by Ca2+ uptake deficiency. Remarkably, Cameleon Ca2+ sensors revealed that the absence of AtCCX2 activity results in decreased cytosolic and increased ER Ca2+ concentrations in comparison with both WT and the gain-of-function mutants. This was observed in both salt and nonsalt osmotic stress conditions. It appears that AtCCX2 is directly involved in the control of Ca2+ fluxes between the ER and the cytosol, which plays a key role in the ability of plants to cope with osmotic stresses. To our knowledge, Atccx2 is unique as a plant mutant to show a measured alteration in ER Ca2+ concentrations. In this study, we identified the ER-localized AtCCX2 as a pivotal player in the regulation of ER Ca2+ dynamics that heavily influence plant growth upon salt and osmotic stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app