Add like
Add dislike
Add to saved papers

Thrombin promotes PAI-1 expression and migration in keratinocytes via ERK dependent Smad linker region phosphorylation.

Keratinocyte proliferation and migration is essential during re-epithelialisation for the restoration of the epithelial barrier during skin wound healing. Numerous growth factors are involved in the stimulation of keratinocyte proliferation and migration. The signalling pathways that drive these processes during wound healing are not well defined. This study investigated thrombin-mediated signalling in keratinocytes. The thrombin receptor, protease-activated receptor 1 (PAR-1) is a seven transmembrane G-protein coupled receptor that is known to transactivate the epidermal growth factor receptor (EGFR). Immortalized human keratinocytes (HaCaT cells) were treated with thrombin and selective inhibitors to EGFR and MAP kinases. Whole cell lysates were separated on SDS-PAGE and analysed by Western blot using antibodies against transcription factor Smad2. Quantitative real-time polymerase chain reaction was used to measure the mRNA expression of PAI-1 while scratch wound assays were used to measure keratinocyte migration. Western blot data showed that thrombin mediates PAR-1 transactivation of EGFR and the downstream phosphorylation of the transcription factor Smad2 linker (Smad2L) region. ERK1/2 inhibition by UO126 caused a decrease in Smad2L phosphorylation while the p38 inhibitor SB202190 and JNK inhibitor SP600125 did not. Smad2L Ser250 was specifically phosphorylated by this thrombin mediated pathway while Ser245 and Ser255 were not. Thrombin increased PAI-1 mRNA expression and keratinocyte migration and this was reduced when either EGFR or ERK1/2 were blocked. Taken together these results show that thrombin mediated mRNA expression of PAI-1 in keratinocytes and migration occurs via EGFR transactivation and involves signalling intermediates ERK1/2 and Smad2 and may be a key pathway in skin wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app