Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Monocular enucleation alters retinal waves in the surviving eye.

Neural Development 2018 March 25
BACKGROUND: Activity in neurons drives afferent competition that is critical for the refinement of nascent neural circuits. In ferrets, when an eye is lost in early development, surviving retinogeniculate afferents from the spared eye spread across the thalamus in a manner that is dependent on spontaneous retinal activity. However, how this spontaneous activity, also known as retinal waves, might dynamically regulate afferent terminal targeting remains unknown.

METHODS: We recorded retinal waves from retinae ex vivo using multi-electrode arrays. Retinae came from ferrets who were binocular or who had one eye surgically removed at birth. Linear mixed effects models were used to investigate the effects of early monocular enucleation on retinal wave activity.

RESULTS: When an eye is removed at birth, spontaneous bursts of action potentials by retinal ganglion cells (RGCs) in the surviving eye are shorter in duration. The shortening of RGC burst duration results in decreased pairwise RGC correlations across the retina and is associated with the retinal wave-dependent spread of retinogeniculate afferents previously reported in enucleates.

CONCLUSION: Our findings show that removal of the competing eye modulates retinal waves and could underlie the dynamic regulation of competition-based refinement during retinogeniculate development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app