Add like
Add dislike
Add to saved papers

Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: Emphasis on biofilm reduction.

Nanotechnology-based drug delivery systems have been used to enhance bioavailability and biological activities. Chitosan incorporating curcumin can serve as a biocompatible substitute for metallic nanoparticles in preventing biofilm formation of Streptococcus mutans and plaque on teeth. The interactions between chitosan nanoparticle as a carrier and curcumin, a natural antibacterial agent, were simulated. The binding conformation between curcumin-chitosan was obtained using the Lamarckian Genetic Algorithm in Autodock™ software in chitosan nanoparticle. The interaction stability was examined in the molecular dynamic stages, with isothermal-isobaric ensemble in the CHARMM Force Field. The results showed the root mean square deviation (RMSD) and the root mean square fluctuations (RMSF) for all complex's atoms were relaxed after 4ns (RMSD for the all-atoms was 26.81±0.1 (Å); RMSF 1.13±0.02Å). For each section, the estimation of RMSD, RMSF, radius of gyration, inter-H bond and other analysis confirmed that, during the first interval;10ns, there was a stable binding between the two sections. Although all bindings disappeared from 10 to 20ns, the curcumin was trapped inside the chitosan nanoparticles, and no release took place until 20ns, after which the curcumin began to release. This trend suggests that chitosan nanoparticle has ability to carry the curcumin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app