Add like
Add dislike
Add to saved papers

Hypoxia-Activated Adipose Mesenchymal Stem Cells Prevents Irradiation-Induced Salivary Hypofunction by Enhanced Paracrine Effect Through Fibroblast Growth Factor 10.

Stem Cells 2018 March 24
To explore the effects and mechanisms of paracrine factors secreted from human adipose mesenchymal stem cell (hAdMSCs) that are activated by hypoxia on radioprotection against irradiation-induced salivary hypofunction in subjects undergoing radiotherapy for head and neck cancers. An organotypic spheroid coculture model to mimic irradiation (IR)-induced salivary hypofunction was set up for in vitro experiments. Human parotid gland epithelial cells were organized to form three-dimensional (3D) acinus-like spheroids on growth factor reduced -Matrigel. Cellular, structural, and functional damage following IR were examined after cells were cocultured with hAdMSCs preconditioned with either normoxia (hAdMSCNMX ) or hypoxia (hAdMSCHPX ). A key paracrine factor secreted by hAdMSCsHPX was identified by high-throughput microarray-based enzyme-linked immunosorbent assay. Molecular mechanisms and signaling pathways on radioprotection were explored. Therapeutic effects of hAdMSCsHPX were evaluated after in vivo transplant into mice with IR-induced salivary hypofunction. In our 3D coculture experiment, hAdMSCsHPX significantly enhanced radioresistance of spheroidal human parotid epithelial cells, and led to greater preservation of salivary epithelial integrity and acinar secretory function relative to hAdMSCsNMX . Coculture with hAdMSCsHPX promoted FGFR expression and suppressed FGFR diminished antiapoptotic activity of hAdMSCsHPX . Among FGFR-binding secreted factors, we found that fibroblast growth factor 10 (FGF10) contributed to therapeutic effects of hAdMSCsHPX by enhancing antiapoptotic effect, which was dependent on FGFR-PI3K signaling. An in vivo transplant of hAdMSCsHPX into irradiated salivary glands of mice reversed IR-induced salivary hypofunction where hAdMSC-released FGF10 contributed to tissue remodeling. Our results suggest that hAdMSCsHPX protect salivary glands from IR-induced apoptosis and preserve acinar structure and functions by activation of FGFR-PI3K signaling via actions of hAdMSC-secreted factors, including FGF10. Stem Cells 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app