Add like
Add dislike
Add to saved papers

In situ organic compound analysis on a meteorite surface by desorption electrospray ionization coupled with an Orbitrap mass spectrometer.

RATIONALE: Since extraterrestrial organic matter in meteorites is a very complex mixture that is hard to ionize due to its association with minerals, in situ analysis of polar organic compounds has never been performed. In addition, when studying powdered samples, spatial information of organic compounds is lost.

METHODS: In situ molecular analysis and chemical imaging of polar organic compounds were performed on a meteorite surface by desorption electrospray ionization coupled with high-resolution mass spectrometry (DESI-HRMS) using an Orbitrap mass spectrometer.

RESULTS: Many CHN compounds, including alkylated pyridine and imidazole homologues, were identified from the complex peaks by HRMS using a spray of electrically charged methanol with a spatial resolution of approximately 50 μm. The same alkylated homologues have the same spatial distribution in the meteorite matrix, while alkylpyridines occur in a different location from alkylimidazoles.

CONCLUSIONS: The compound distribution suggests a different source for each compound series or a chromatographic separation effect associated with fluid movement in the meteorite parent body. The DESI-HRMS imaging will further our understanding of organic compound distribution with respect to mineral and water interactions in meteorites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app