Add like
Add dislike
Add to saved papers

MicroRNA-181c prevents apoptosis by targeting of FAS receptor in Ewing's sarcoma cells.

Background: MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that play important roles in multiple biological processes. Here, we show that miRNAs play an important function in the down-regulation of FAS expression in Ewing's sarcoma (ES) cells.

Methods: To identify and characterize possible oncogenic factors in ES, we employed a microarray-based approach to profile the changes in the expression of miRNAs and their target mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs).

Results: MiRNA, miR-181c, was significantly up-regulated, whereas FAS receptor expression was significantly down-regulated in all tested ES cells compared with hMSCs. Introducing anti-miR-181c into ES cell lines resulted in an increased expression of FAS2. Additionally, anti-miR-181c prohibited cell growth and cell cycle progression in ES cells. Anti-miR-181c also promoted apoptosis in ES cells. Furthermore, the down-regulation of miR-181c in ES cells significantly suppressed tumor growth in vivo.

Conclusions: These results suggest that unregulated expression of miR-181c could contribute to ES by targeting FAS. Reduction of miR181c increased expression of FAS. This proves that retardation of cell cycle progression removes apoptosis resistance, thereby repressing the growth of Ewing sarcoma. Since FAS signaling is involved in regulation of apoptosis and tumor proliferation, our findings might contribute to new therapeutic targets for ES.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app