Add like
Add dislike
Add to saved papers

Initial In Vitro Development of a Potassium-Based Intra-Articular Injection for Osteoarthritis.

The long-term goal of this work is to develop a potassium (K+ )-based intra-articular (IA) injection for osteoarthritis treatment. Within this context, the objectives of this study were to (1) demonstrate that hyperosmolar K+ solutions can suppress proinflammatory macrophage activation and (2) evaluate the therapeutic potential of a hyperosmolar K+ solution relative to a clinically utilized drug-based (methylprednisolone acetate [MPA]-a corticosteroid) or cell-based (human mesenchymal stem cell [hMSC]) IA injectable. A 3D in vitro model with poly(ethylene glycol) diacrylate hydrogels encapsulated with proinflammatory interferon-gamma (IFN)-stimulated macrophages (M(IFN)s) was utilized. Long-term changes in cell phenotype in response to short-term stimulation (i.e., mimicking an IA injection) were assessed following treatment with 80 mM K+ gluconate, hMSCs, or MPA. Addition of 80 mM K+ gluconate to culture media significantly reduced iNOS and TNF protein levels in M(IFN)s. Furthermore, short-term stimulation with K+ gluconate elicited a significant increase in the anti/proinflammatory cytokine profile in M(IFN)s, a response that is not noticed with either clinically utilized MPA or an hMSC injectable. Hyperosmolar K+ solutions are capable of attenuating proinflammatory macrophage activation. Moreover, when evaluated in an in vitro setting mimicking an IA injection, K+ performed significantly better than hMSCs or the corticosteroid MPA. Cumulatively, these results support further development and application of a K+ -based IA injection toward osteoarthritis research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app