Add like
Add dislike
Add to saved papers

Isotope Dilution-Based Targeted and Nontargeted Carbonyl Neurosteroid/Steroid Profiling.

Analytical Chemistry 2018 April 18
Neurosteroids are brain-derived steroids, capable of rapidly modulating neuronal excitability in a nongenomic manner. Dysregulation of their synthesis or metabolism has been implicated in many pathological conditions. Here, we describe an isotope dilution based targeted and nontargeted (ID-TNT) profiling of carbonyl neurosteroids/steroids. The method combines stable isotope dilution, hydroxylamine derivatization, high-resolution MS scanning, and data-dependent MS/MS analysis, allowing absolute quantification of pregnenolone, progesterone, 5α-dihydroprogesterone, 3α,5α-tetrahydroprogesterone, and 3β,5α-tetrahydroprogesterone, and relative quantification of other carbonyl containing steroids. The utility and validity of this approach was tested in an acute stress mouse model and via pharmacological manipulation of the steroid metabolic pathway with finasteride. We report that brain levels of 3α,5α-tetrahydroprogesterone, a potent enhancer of GABAA receptor (GABAA R-mediated inhibitory function, from control mice is in the 5-40 pmol/g range, a value greater than previously reported. The approach allows the use of data from targeted analysis to guide the normalization strategy for nontargeted data. Furthermore, novel findings, including a striking increase of brain pregnenolone following finasteride administration were discovered in this study. Collectively, our results indicate that this approach has distinct advantages for examining targeted and nontargeted neurosteroid/steroid pathways in animal models and could facilitate a better understanding of the physiological and pathological roles of neurosteroids as modulators of brain excitability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app