Add like
Add dislike
Add to saved papers

Olfactory Dysfunction in Autoimmune Central Nervous System Neuroinflammation.

Olfactory dysfunction is an early sign of neuroinflammation of the central nervous system (CNS). Microgliosis and astrogliosis are representative pathological changes that develop during neuroinflammation of CNS tissues. Autoimmune CNS inflammation, including human multiple sclerosis, is an occasional cause of olfactory disorders. We evaluated whether gliosis and olfactory dysfunction developed in animals with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis. Neuroinflammatory lesions characterized by infiltration of inflammatory cells and microglial cell activation were occasionally found in the olfactory bulbs of EAE-affected rats. Microglial activation, visualized by immunohistochemical staining of ionized calcium binding protein (Iba)-1, and astrogliosis in the olfactory bulb were also evident in the olfactory bulb of EAE rats. Inflammatory cells were found along the olfactory nerves and in the olfactory submucosa. Western blot analysis of olfactory marker protein (OMP) levels showed that OMP expression was significantly downregulated in the olfactory mucosa of EAE rats. On the buried food test, EAE-affected mice required significantly more time to find a bait pellet. Collectively, the results suggest that the olfactory dysfunction of EAE is closely linked to downregulation of OMP and the development of inflammatory foci in the olfactory system in an animal model of human multiple sclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app