Add like
Add dislike
Add to saved papers

Resveratrol improves glucose uptake in insulin-resistant adipocytes via Sirt1.

Insulin resistance serves as "common soil" for promoting the development of metabolic diseases; however, the precise pathological factors leading to insulin resistance are not well clarified. Resveratrol (Res) is a natural polyphenolic compound with anti-inflammatory and antioxidative effects. However, effects and mechanisms of Res on glucose metabolism in adipocytes remain largely unknown. In this study, we show Res treatment significantly increases glucose uptake in insulin-resistant 3T3-L1 adipocytes in vitro. Mechanistically, Res up-regulates the protein level of Sirt1 that improves insulin signaling pathway and promotes cellular membrane Glut4 accumulation. Meanwhile, Sirt1 enhances phosphorylation level of AMPK which elevates p-AKT level. Consequently, the transcription factor FOXO1 translocalizes from nucleus to cytoplasm where protein degradation occurs. Therefore, the gene expression of resistin, a direct transcriptional target of FOXO1, is reduced and insulin sensitivity is improved. Importantly, we recapitulate the similar pattern of related protein changes in epididymal adipose tissues of insulin-resistant mice after Res intervention in vivo, reinforcing the hypothesis of Res being involved in regulation of glucose uptake via Sirt1-AMPK axis. Our findings clarify the beneficial effects of Res on glucose transportation in insulin-resistant adipocytes and involved pathway including Sirt1-AMPK, suggesting its potential therapeutic application in the treatment or prevention of insulin-resistance-related metabolic symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app