Add like
Add dislike
Add to saved papers

The Unusual Transmembrane Partition of the Hexameric Channel of the Hepatitis C Virus.

Structure 2018 April 4
The p7 protein of the hepatitis C virus (HCV) can oligomerize in membrane to form cation channels. Previous studies showed that the channel assembly in detergent micelles adopts a unique flower-shaped oligomer, but the unusual architecture also presented problems for understanding how this viroporin resides in the membrane. Moreover, the oligomeric state of p7 remains controversial, as both hexamer and heptamer have been proposed. Here we address the above issues using p7 reconstituted in bicelles that mimic a lipid bilayer. We found, using a recently developed oligomer-labeling method, that p7 forms hexamers in the bicelles. Solvent paramagnetic relaxation enhancement analyses showed that the bilayer thickness around the HCV ion channel is substantially smaller than expected, and thus a significant portion of the previously assigned membrane-embedded region is solvent exposed. Our study provides an effective approach for characterizing the transmembrane partition of small ion channels in near lipid bilayer environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app