Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human and model observer performance for lesion detection in breast cone beam CT images with the FDK reconstruction.

We investigate the detectability of breast cone beam computed tomography images using human and model observers and the variations of exponent, β, of the inverse power-law spectrum for various reconstruction filters and interpolation methods in the Feldkamp-Davis-Kress (FDK) reconstruction. Using computer simulation, a breast volume with a 50% volume glandular fraction and a 2mm diameter lesion are generated and projection data are acquired. In the FDK reconstruction, projection data are apodized using one of three reconstruction filters; Hanning, Shepp-Logan, or Ram-Lak, and back-projection is performed with and without Fourier interpolation. We conduct signal-known-exactly and background-known-statistically detection tasks. Detectability is evaluated by human observers and their performance is compared with anthropomorphic model observers (a non-prewhitening observer with eye filter (NPWE) and a channelized Hotelling observer with either Gabor channels or dense difference-of-Gaussian channels). Our results show that the NPWE observer with a peak frequency of 7cyc/degree attains the best correlation with human observers for the various reconstruction filters and interpolation methods. We also discover that breast images with smaller β do not yield higher detectability in the presence of quantum noise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app