Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Combinatorial pathway engineering using type I-E CRISPR interference.

Optimization of metabolic flux is a difficult and time-consuming process that often involves changing the expression levels of multiple genes simultaneously. While some pathways have a known rate limiting step, more complex metabolic networks can require a trial-and-error approach of tuning the expression of multiple genes to achieve a desired distribution of metabolic resources. Here we present an efficient method for generating expression diversity on a combinatorial scale using CRISPR interference. We use a modified native Escherichia coli Type I-E CRISPR-Cas system and an iterative cloning strategy for construction of guide RNA arrays. This approach allowed us to build a combinatorial gene expression library three orders of magnitude larger than previous studies. In less than 1 month, we generated ∼12,000 combinatorial gene expression variants that target six different genes and screened these variants for increased malonyl-CoA flux and 3-hydroxypropionate (3HP) production. We were able to identify a set of variants that exhibited a significant increase in malonyl-CoA flux and up to a 98% increase in 3HP production. This approach provides a fast and easy-to-implement strategy for engineering metabolic pathway flux for development of industrially relevant strains, as well as investigation of fundamental biological questions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app