Add like
Add dislike
Add to saved papers

Microtubular remodeling and decreased expression of Nav1.5 with enhanced EHD4 in cells from the infarcted heart.

Life Sciences 2018 May 16
Cardiac Na+ channel remodeling provides a critical substrate for generation of reentrant arrhythmias in border zones of the infarcted canine heart. Recent studies show that Nav1.5 cytoskeletal- and endosomal-based membrane trafficking and function are linked to tubulin, microtubular (MT) networks, and Eps15 homology domain containing proteins like EHD4.

AIM: Our objective is to understand the relation of tubulin and EHD4 to Nav 1.5 channel protein remodeling observed in border zone cells (IZs) when arrhythmias are known to occur; that is, 3-h, 48-h and 5-day post coronary occlusion.

MATERIALS METHODS FINDINGS: Our voltage clamp and immunostaining data show that INa density is decreased in the epicardial border zone cells of the 48 h infarcted heart (IZ48h ). Immunostaining studies reveal that in post MI cells the cell surface staining of Nav 1.5 was reduced and Nav 1.5 distribution changed. However, intense co-staining of Nav 1.5 and tubulin occurs in core planes and the perinuclear areas in post MI cells. At the same time, there were marked changes in the subcellular location of the EHD4 protein. EHD4 is co-localized with tubulin protein in discrete intracellular "highway" structures.

SIGNIFICANCE: The distribution and expression of the three proteins are altered dynamically in post MI cells. In sum, our work illustrates the spatiotemporal complexity of remodeling mechanisms in the post-infarct myocyte. It will be important in future experiments to further explore direct links between MT, EHD proteins, and cell proteins involved in forward trafficking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app